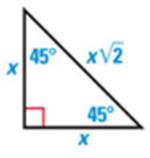

Special Right Triangle Notes

- A. All of these ratios are derived from the Pythagorean Theorem.
- B. $30^{\circ} 60^{\circ} 90^{\circ}$ Triangles



#1 Given the shorter side is 10 cm, what
are the longer side and the
hypotenuse?#2 Given the longer side is 8 in, what
are the shorter side and the
hypotenuse?Solve the equation.

shorter side = x = 10 cmlonger side = $x\sqrt{3} = 10\sqrt{3} \text{ cm}$ hypotenuse = 2x = 2(10) = 20 cm

solve the equation.
longer side =
$$x\sqrt{3} = 8$$
 in (so $x = \frac{8\sqrt{3}}{3}$)
shorter side = $x = \frac{8\sqrt{3}}{3}$ in
hypotenuse = $2x = 2\left(\frac{8\sqrt{3}}{3}\right)$
 $= \frac{16\sqrt{3}}{3}$ in

C. $45^{\circ} - 45^{\circ} - 90^{\circ}$ Triangles

Given the hypotenuse is 6 cm, what is each leg length?

hypotenuse = $x\sqrt{2} = 6 \ cm$ solving the equation, $x = \frac{6\sqrt{2}}{2} = 3\sqrt{2}$ leg length = $x = 3\sqrt{2} \ cm$