A. All of these ratios are derived from the Pythagorean Theorem.
B. $\quad 30^{\circ}-60^{\circ}-90^{\circ}$ Triangles

\#1 Given the shorter side is 10 cm , what are the longer side and the hypotenuse?

$$
\begin{gathered}
\text { shorter side }=x=10 \mathrm{~cm} \\
\text { longer side }=x \sqrt{3}=10 \sqrt{3} \mathrm{~cm} \\
\text { hypotenuse }=2 x=2(10)=20 \mathrm{~cm}
\end{gathered}
$$

\#2 Given the longer side is 8 in , what are the shorter side and the hypotenuse?

> Solve the equation.

$$
\text { longer side }=\frac{x \sqrt{3}}{\left.\frac{8 \sqrt{3}}{3}\right)}=8 \text { in }(\text { so } x=
$$

$$
\text { shorter side }=x=\frac{8 \sqrt{3}}{3} \text { in }
$$

$$
\text { hypotenuse }=2 x=2\left(\frac{8 \sqrt{3}}{3}\right)
$$

$$
=\frac{16 \sqrt{3}}{3} \mathrm{in}
$$

C. $45^{\circ}-45^{\circ}-90^{\circ}$ Triangles

Given the hypotenuse is 6 cm , what is each leg length?

$$
\begin{gathered}
\text { hypotenuse }=x \sqrt{2}=6 \mathrm{~cm} \\
\text { solving the equation, } x=\frac{6 \sqrt{2}}{2}=3 \sqrt{2}
\end{gathered}
$$

$$
\text { leg length }=x=3 \sqrt{2} \mathrm{~cm}
$$

