These references are automatically given to you to use on the SAT. Be sure you understand how to use each formula/concept.

REFERENCE

The number of degrees of arc in a circle is 360 .
The number of radians of arc in a circle is 2π.
The sum of the measures in degrees of the angles of a triangle is 180.

Formulas you should study and understand before taking the SAT:
Vertical (Opposite) Angles:

Linear Pairs: Two supplementary angles that together form a line.
Corresponding Angles:
If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.

Alternate Interior Angles:
If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.

Alternate Exterior Angles:

If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.

Same Side Interior Angles:
If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.
 supplementarv.

Triangle Congruence:

CPCTC: Corresponding
Parts of Congruent
Triangles are Congruent

Triangle Similarity:

AA Similarity Postulate
SSS Similarity Theorem
SAS Similarity Theorem
*Corresponding sides are proportional, and corresponding angles are congruent.

$\sin (B)=\frac{\text { opposite }}{\text { hypotemuse }}$

$\cos (B)=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan (B)=\frac{\text { opposite }}{\text { adjacent }}$

sum \rightarrow add
difference \rightarrow subtract product \rightarrow multiply quotient \rightarrow divide

mode \leftrightarrow most
range \leftrightarrow difference

$$
\frac{\text { part }}{\text { whole }}=\frac{\%}{100}
$$

Arc Length: $S=\frac{\theta^{\circ}}{360^{\circ}} \pi d$ $p($ event $)=\frac{\text { number of favorable outcomes }}{\text { number of total outcomes }}$

Distance Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\text { Midpoint }=\left(\frac{x_{2}+x_{1}}{2}, \frac{y_{2}+y_{1}}{2}\right)
$$

Linear Functions:

$$
y=m x+b
$$

$$
m=\text { slope }=\text { rate of change }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
b=\text { original value }=y-\text { intercept }
$$

$$
\text { Same Slopes } \rightarrow \text { Parallel Lines }
$$

Opposite Reciprocal Slopes \rightarrow Perpendicular Lines

Equation of a Circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$, where (h, k) is the center and r is the radius.

$$
\text { FOIL: }(a+b)(c+d)=a c+a d+b c+b d
$$

Quadratic Functions:

Solve for x when $a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Vertex Form: $y=a(x-h)^{2}+k$, where (h, k) is the vertex of the parabola.

$$
\begin{gathered}
i=\sqrt{-1} \\
i^{2}=-1 \\
i^{3}=-i \\
i^{4}=1
\end{gathered}
$$

$$
(\sqrt[n]{a})^{m}=a^{\frac{m}{n}}
$$

$\xrightarrow{4}$

Exponent Properties:

$$
\begin{array}{lll}
a^{0}=1 & a^{-n}=\frac{1}{a^{n}} & a^{m} \cdot a^{n}=a^{m+n} \\
\frac{a^{m}}{a^{n}}=a^{m-n} & (a b)^{n}=a^{n} b^{n} & \left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} \\
& \left(a^{m}\right)^{n}=a^{m n} & \frac{1}{a^{-n}}=a^{n}
\end{array}
$$

Exponential Functions: $y=a b^{x}$, where $a=$ original value, $b=$ growth or decay factor. If $0<b<1$, then the function is decaying. If $b>1$, then the function is growing. (If $b=0.2$, then there is 80% decay. If $b=1.2$, then there is 20% growth.)

