Solve each equation. Check your answers.
20. $\ln 3 x=6$
21. $\ln x=-2$
22. $\ln (4 x-1)=36$
23. $1.1+\ln x^{2}=6$
24. $\ln \frac{x-1}{2}=4$
25. $\ln 4 r^{2}=3$
26. $2 \ln 2 x^{2}=1$
27. $\ln (2 m+3)=8$
28. $\ln (t-1)^{2}=3$

Use natural logarithms to solve each equation.
29. $e^{x}=18$
30. $e^{\frac{x}{5}}+4=7$
31. $e^{2 x}=12$
32. $e^{\frac{x}{2}}=5$
33. $e^{x+1}=30$
34. $e^{2 x}=10$
35. $e^{3 x}+5=6$
36. $e^{\frac{x}{9}}-8=6$
37. $7-2 e^{\frac{x}{2}}=1$
| Space For Exercises 38 and 39, use $v=-0.0098 t+c \ln R$, where v is the velocity of the rocket, t is the firing time, c is the velocity of the exhaust, and R is the ratio of the mass of the rocket filled with finel to the mass of the rocket without fuel. Space A spacecraft can attain a stable orbit 300 km above Earth if it reaches a velocity of $7.7 \mathrm{~km} / \mathrm{s}$.
38. Find the velocity of a spacecratt whose booster rocket has a mass ratio of 20 , an exhaust velocity of $2.7 \mathrm{~km} / \mathrm{s}$, and a firing time of 30 s . Can the spacecraft achieve a stable orbit 300 km above Earth?

Simplify each expression.
42. $\ln 1$
43. $\frac{\ln e}{4}$
44. $\frac{\ln e^{2}}{2}$
45. $\ln e^{83}$
46. $\ln e$
47. $\ln e^{2}$
48. $\ln e^{10}$
49. $10 \ln e$
50. $\ln e^{3}$
51. $\frac{\ln e^{4}}{8}$

