Solve each equation. Check your answers.

20. $\ln 3x = 6$	21. $\ln x = -2$	22. $\ln(4x-1) = 36$
23. $1.1 + \ln x^2 = 6$	24. $\ln \frac{x-1}{2} = 4$	25. $\ln 4r^2 = 3$
26. $2 \ln 2x^2 = 1$	27. $\ln(2m+3) = 8$	28. $\ln(t-1)^2 = 3$

Use natural logarithms to solve each equation.

29. $e^{x} = 18$	30. $e^{\frac{x}{5}} + 4 = 7$	31. $e^{2x} = 12$
32. $e^{\frac{x}{2}} = 5$	33. $e^{x+1} = 30$	34. $e^{2x} = 10$
35. $e^{3x} + 5 = 6$	36. $e^{\frac{x}{9}} - 8 = 6$	37. $7 - 2e^{\frac{x}{2}} = 1$

SpaceFor Exercises 38 and 39, use $v = -0.0098t + c \ln R$, where v is the
velocity of the rocket, t is the firing time, c is the velocity of the exhaust, and
R is the ratio of the mass of the rocket filled with fuel to the mass of the rocket
without fuel.Space A spacecraft can attain a stable orbit 300 km above
Earth if it reaches a velocity of 7.7 km/s.

38. Find the velocity of a spacecraft whose booster rocket has a mass ratio of 20, an exhaust velocity of 2.7 km/s, and a firing time of 30 s. Can the spacecraft achieve a stable orbit 300 km above Earth?

Simplify each expression.

42. ln 1	43 . $\frac{\ln e}{4}$	44. $\frac{\ln e^2}{2}$	45. ln <i>e</i> ⁸³	46. ln <i>e</i>
47. ln <i>e</i> ²	48. ln <i>e</i> ¹⁰	49. 10 ln <i>e</i>	50. ln <i>e</i> ³	51. $rac{\ln e^4}{8}$

S

S