ACT Formulas to Know

Figure	Diagram	Formula
Triangle		$A=\frac{1}{2} b h$
Parallelogram		$A=b h$
Trapezoid		$\begin{gathered} A=\frac{1}{2}\left(b_{1}+b_{2}\right) h \\ * b_{1} / / b_{2} \end{gathered}$

Circles
Area $=\pi r^{2}$
Circumference $=2 \pi r=\pi d$
Length of an arc: $S=\frac{\theta^{\circ}}{360^{\circ}} \pi d$
$y=m x+b$ (slope intercept form)

1) $m=$ slope and $b=y$-intercept
2) slope $=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
3) 2 lines are parallel if their slopes are the same $\left(\mathrm{m}=\frac{2}{3}\right.$ and $\left.\mathrm{m}=\frac{2}{3}\right)$
4) 2 lines are perpendicular \perp if their slopes are opposites and reciprocals
$\left(\mathrm{m}=\frac{2}{3}\right.$ and $\left.\mathrm{m}=\frac{-3}{2}\right)$

The area of a regular
polygon with apothem a and

$$
A=\frac{1}{2} a P
$$

Namo ofligr	stame	Surface Area	Volume
com	Δ	$\pi r l+\pi r^{2}$	$\frac{1}{3} \pi r^{2} h$
${ }^{\text {pramid }}$		$\frac{1}{2} l p+B$	${ }_{3}^{1}{ }^{\text {Bh }}$
spore		$4 \pi r^{2}$	$\frac{4 \pi r^{3}}{3}$
Cftatar		$2 \pi r h+2 \pi r^{2}$	$\pi r^{2} h$
Recomgatar Prim		$2 ¢ w+2[\hbar+2 w \hbar$	fwn
Prim		${ }^{6} p+2 \mathcal{B}$	Bh

$$
\begin{aligned}
& \begin{array}{l}
\text { Algebra: Quadratic Formula } \\
\text { (Used to solve an equation involving } \left.\mathrm{x}^{2}\right) \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

distance formula $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

1. $a^{m} \cdot a^{n}=a^{m+n}$
2. $\frac{a^{m}}{a^{n}}=a^{m-n}$
3. $a^{m^{n}}=a^{m n}$
4. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
5. $a^{0}=1$
6. $a^{-n}=\frac{1}{a^{n}}$
