## 8-5 Adding and Subtracting Rational Expressions

A. Recall multiplying and dividing fractions do NOT require a common denominator.

Multiplying - multiply the top times top, bottom times bottom $\rightarrow$ factor $\rightarrow$ cancel

Dividing - multiply by the reciprocal...
B. Adding/Subtracting

1. Factor the denominators.
2. Find the least common denominator (LCD), which is the smallest denominator containing both original denominators.
3. Multiply what is needed to the top and bottom to acquire the LCD.
4. Foil/Distribute $\rightarrow$ Add/Subtract the numerators, keeping the denominator the same. (Careful with subtraction!)
5. Be sure the answer is in reduced form.
C. Examples - "Back in the Day...Without a Calculator ©"

$$
\begin{aligned}
& \frac{2}{15}+\frac{1}{6}= \\
& \frac{2}{(3)(5)}+\frac{1}{(2)(3)}= \\
& \frac{2(2)}{(3)(5)(2)}+\frac{1(5)}{(2)(3)(5)}= \\
& \frac{4}{30}+\frac{5}{30}=\frac{20}{30}=\frac{2}{3}
\end{aligned}
$$

## D. Examples - Simplify each expression.

1. 

$$
\begin{aligned}
& \frac{3 x}{x^{2}+5 x+6}-\frac{2 x}{x^{2}+6 x+9}= \\
& \frac{3 x}{(x+3)(x+2)}-\frac{2 x}{(x+3)(x+3)}= \\
& \frac{3 x(x+3)}{(x+3)(x+3)(x+2)}-\frac{2 x(x+2)}{(x+3)(x+3)(x+2)}= \\
& \frac{3 x^{2}+9 x}{(x+3)(x+3)(x+2)}-\frac{2 x^{2}+4 x}{(x+3)(x+3)(x+2)}= \\
& \frac{x^{2}+5 x}{(x+3)(x+3)(x+2)}=\frac{x^{2}+5 x}{(x+3)^{2}(x+2)}
\end{aligned}
$$

2. 

$$
\begin{aligned}
& \frac{1}{x^{2}-4 x-12}+\frac{3 x}{4 x+8}= \\
& \frac{1}{(x-6)(x+2)}+\frac{3 x}{4(x+2)}= \\
& \frac{4}{4(x-6)(x+2)}+\frac{3 x(x-6)}{4(x+2)(x-6)}= \\
& \frac{4}{4(x-6)(x+2)}+\frac{3 x^{2}-18 x}{4(x+2)(x-6)}= \\
& \frac{3 x^{2}-18 x+4}{4(x+2)(x-6)}
\end{aligned}
$$

3. 

$$
\begin{aligned}
& \frac{4}{8 x+8}-\frac{3}{4 x}= \\
& \frac{4}{8(x+1)}-\frac{3}{4 x}= \\
& \frac{4 x}{8 x(x+1)}-\frac{2 \cdot 3(x+1)}{2 \bullet 4 x(x+1)}= \\
& \frac{4 x}{8 x(x+1)}-\frac{6 x+6}{8 x(x+1)}= \\
& \frac{-2 x-6}{8 x(x+1)}= \\
& \frac{-2(x+3)}{8 x(x+1)}= \\
& \frac{-(x+3)}{4 x(x+1)}=\frac{-x-3}{4 x(x+1)} \\
& \text { E }
\end{aligned}
$$

