8-3 Notes Rational Functions and Their Graphs

A. Continuous/Discontinuous Functions

*Focus on <u>denominators</u> because you can NOT divide by ZERO.

*If the denominator is not factorable, use the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(If x = a + bi, then the function is continuous.)

<u>Examples</u> – Decide if the given function is continuous or discontinuous. If discontinuous, where?

1.
$$f(x) = \frac{x}{x^2 - x - 2}$$
 Discontinuous at x = -1 and 2

- 2. $y = \frac{x+1}{x^2-3x}$ Discontinuous at x = 0 and 3
- 3. $y = \frac{2}{x^2 + 4}$ Continuous (Check with quadratic formula.)
- 4. $y = \frac{2}{x^2 4}$ Discontinuous at x = -2 and 2
- 5. $f(x) = \frac{4}{x^4 + 16}$ Continuous
- 6. $y = \frac{3}{x^2 5x + 6}$ Discontinuous at x = 2 and 3

B. Types of Discontinuities

A rational function may have one or more types of discontinuities: **holes** (removable points of discontinuity), **vertical asymptotes** (non-removable points of discontinuity), or a **horizontal asymptote**.

Then	Example
hole at $x = a$	$f(x) = \frac{(x-5)(x+6)}{(x-5)}$ hole at x = 5
vertical asymptote	x ²
at $x = a$	$f(x) = \frac{1}{x-3}$
	vertical asymptote at $x = 3$
	Thenhole at $x = a$ vertical asymptote at $x = a$

Let m = degree of numerator.

Let n = degree of denominator.

•	m < n	horizontal asymptote at $y = 0$	$f(x) = \frac{4x}{7x^2 + 2}$
•	m > n	no horizontal asymptote exists	$f(x) = \frac{4x^3}{7x^2 + 2}$
•	m = n	horizontal asymptote at $y = \frac{a}{b}$, where <i>a</i> and <i>b</i> are coefficients of highest degree terms in numerator and denominator	$f(x) = \frac{4x^2}{7x^2 + 2}$ horizontal asymptote at $y = \frac{4}{7}$

Problem

What are the points of discontinuity of $y = \frac{x^2 + x - 6}{3x^2 - 12}$, if any?

Step 1 Factor the numerator and denominator completely.
$$y = \frac{(x-2)(x+3)}{3(x-2)(x+2)}$$

- **Step 2** Look for values that are zeros of both the numerator and the denominator. The function has a hole at x = 2.
- **Step 3** Look for values that are zeros of the denominator only. The function has a vertical asymptote at x = -2.
- **Step 4** Compare the degrees of the numerator and denominator. They have the same degree. The function has a horizontal asymptote at $y = \frac{1}{3}$.

Exercises

Find the vertical asymptotes, holes, and horizontal asymptote for the graph of each rational function.

1.
$$y = \frac{x}{x^2 - 9}$$

vertical asymptotes: $x = 3, x = -3$;
horizontal asymptote:
 $y = 0$
2. $y = \frac{6x^2 - 6}{x - 1}$
hole: $x = 1$
horizontal asymptote: $y = \frac{4}{3}$