A. Continuous/Discontinuous Functions
*Focus on denominators because you can NOT divide by ZERO.

Continuous	Discontinuous
$\frac{\text { No gaps in the graph; functions can be }}{\text { graphed without picking up your pen. }}$	There are gaps in the graph; you must pick up your pen to graph the function.
$f(x)=\frac{2}{x^{2}+1}$	$f(x)=\frac{2}{x^{2}-1}=\frac{2}{(x-1)(x+1)}$
$x^{2}+1 \neq 0$	

*If the denominator is not factorable, use the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(If $x=a+b i$, then the function is continuous.)
Examples - Decide if the given function is continuous or discontinuous. If discontinuous, where?
1.

$$
f(x)=\frac{x}{x^{2}-x-2}
$$

Discontinuous at $\mathrm{x}=-1$ and 2
2.

$$
y=\frac{x+1}{x^{2}-3 x} \quad \text { Discontinuous at } \mathrm{x}=0 \text { and } 3
$$

3.

$$
y=\frac{2}{x^{2}+4} \quad \text { Continuous (Check with quadratic formula.) }
$$

4.

$$
\begin{aligned}
& y=\frac{2}{x^{2}-4} \quad \text { Discontinuol } \\
& f(x)=\frac{4}{x^{4}+16} \quad \text { Continuous }
\end{aligned}
$$

6.

$$
y=\frac{3}{x^{2}-5 x+6}
$$

B. Types of Discontinuities

A rational function may have one or more types of discontinuities: holes (removable points of discontinuity), vertical asymptotes (non-removable points of discontinuity), or a horizontal asymptote.

If	Then	Example
a is a zero that can be removed	hole at $x=a$	$f(x)=\frac{(x-5)(x+6)}{(x-5)}$ hole at $x=5$
a is a zero that can NOT be removed	vertical asymptote at $x=a$	$f(x)=\frac{x^{2}}{x-3}$ vertical asymptote at $x=3$

Let $m=$ degree of numerator.
Let $n=$ degree of denominator.

- $m<n$	horizontal asymptote at $y=0$	$f(x)=\frac{4 x}{7 x^{2}+2}$
- $m>n$	no horizontal asymptote exists	$f(x)=\frac{4 x^{3}}{7 x^{2}+2}$
- $m=n$	horizontal asymptote at $y=\frac{a}{b}$, where a and b are coefficients of highest degree terms in numerator and denominator	$f(x)=\frac{4 x^{2}}{7 x^{2}+2}$

Problem

What are the points of discontinuity of $y=\frac{x^{2}+x-6}{3 x^{2}-12}$, if any?
Step 1 Factor the numerator and denominator completely. $y=\frac{(x-2)(x+3)}{3(x-2)(x+2)}$
Step 2 Look for values that are zeros of both the numerator and the denominator. The function has a hole at $x=2$.

Step 3 Look for values that are zeros of the denominator only. The function has a vertical asymptote at $x=-2$.
Step 4 Compare the degrees of the numerator and denominator. They have the same degree. The function has a horizontal asymptote at $y=\frac{1}{3}$.

Exercises

Find the vertical asymptotes, holes, and horizontal asymptote for the graph of each rational function.

1. $y=\frac{x}{x^{2}-9}$
2. $y=\frac{6 x^{2}-6}{x-1}$
hole: $x=1$
vertical asymptotes: $x=3, x=-3$;
horizontal asymptote:
$y=0$
