\qquad
\qquad Date \qquad

7-5

Practice

Solve each equation.

To start, rewrite each side with a common base.

1. $125^{2 x}=25$
$\left(5^{3}\right)^{2 x}=5^{2}$
$5^{6 x}=5^{2}$
$6 x=2$
2. $2^{3 x-3}=64$
3. $81^{3 x}=27$
$x=$

Solve each equation. Round to the nearest ten-thousandth. Check your answers. To start, take the logarithm of each side.
4. $6^{4 x}=234$
5. $3^{5 x}=375$
6. $7^{3 x}-24=184$

$$
\begin{aligned}
\log 6^{4 x} & =\log 234 \\
4 x \log 6 & =\log 234 \\
x & =\frac{\log 234}{4 \log 6} \\
x & \approx
\end{aligned}
$$

$$
\log 3^{5 x}=\log 375
$$

7. $3^{6 x}=2000$
8. $8^{3 x}=154$
9. $12^{4 x}=4600$

Use the following formula for Exercise 10.

$$
y=a(\mathrm{~b})^{x}
$$

- $x=$ the number of minutes it takes for $\frac{3}{4}$ of the crowd to leave the stadium
- $y=$ the number of people remaining in the stadium after x minutes
- $a=$ the number of people initially/currently in the stadium
- $b=$ growth or decay factor (Pay attention to whether there is an increase or decrease.)

10. There are currently 100,000 people in a stadium watching a soccer game. When the game ends, about 3% of the crowd will leave the stadium each minute. At this rate, how many minutes will it take for $\frac{3}{4}$ of the crowd to leave the stadium?

Convert from Logarithmic Form to Exponential Form to solve each equation.

Exponential and Logarithmic Form	
Logarithmic Form	Exponential Form
$\log _{b} x=y$	$b^{y}=x$

11. $\log (2 x+4)=3$

$$
\begin{aligned}
2 x+4 & =10^{3} \\
2 x & =996 \\
x & =
\end{aligned}
$$

12. $\log 4 z-3=2$
13. $\log (2 x-8)=2$
$\log 4 z=5$

Use the properties of logarithms to solve each equation.

Product Property	Quotient Property	Power Property
$\log _{b} m n=\log _{b} m+\log _{b} n$	$\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$	$\log _{b} m^{n}=n \log _{b} m$

14. $2 \log x+\log 4=3$

$$
\begin{aligned}
\log x^{2}+\log 4 & =3 \\
\log 4 x^{2} & =3 \\
4 x^{2} & =10^{3} \\
x^{2} & =250 \\
x & \approx
\end{aligned}
$$

15. $\log y-\log 4=2$

$$
\log \frac{y}{4}=2
$$

17. Error Analysis Your friend used the following steps to solve the equation $\log x+\log 6=4$.

What error did he make? What is the correct answer?
$\log x+\log 6=4$

$$
\begin{aligned}
\log \frac{x}{6} & =4 \\
\frac{x}{6} & =10^{4} \\
x & =6000
\end{aligned}
$$

