7-5 Logarithmic Equations Notes

- Information/Reminders Α.
 - 1.
 - Impossible to take the log of a _____ or ____. When you <u>raise</u> both sides of an equation to $\frac{?}{even \#}$ or $\frac{even \#}{\sqrt{?}}$, 2. include _____ in your answer.
 - Check for extraneous solutions whenever _____ both sides of 3. an equation to an power.
 - If the base is not indicated, it's _____. 4.
 - Rewrite in exponential form: $log_b y = x \leftrightarrow$ ______. 5.
 - Complete the table below. 6.

Product Property	Quotient Property	Power Property
$\log_b mn =$	$\log_b \frac{m}{n} =$	$\log_b m^n =$

Unless otherwise stated, round to the nearest tenth.

Equations containing variables as the <u>base</u>. Β. \rightarrow Reverse PEMDAS

1.
$$y^{\frac{3}{4}} - 5 = 1$$

2.
$$\sqrt[3]{x^2} - 2 = 2$$

- C. Equations containing variables as the <u>exponent</u>.
 - \rightarrow Simplify (Get base with exponent alone.)
 - → Log **Both** Sides
 - → Power Property
 - \rightarrow Solve
 - 1. $2 + 3^x = 82$

2. $12^{x-1} - 2 = 18$ (round to 4 decimal places)

- D. Equations containing <u>logs</u> of variables.
 - → Shrink Using Properties
 - \rightarrow Rewrite in Exponential Form
 - \rightarrow Solve
 - 1. $\log 6 \log(3x) = -2$

2. $\log(x + 21) + \log x = 2$