7-5 Logarithmic Equations Notes

- A. Information/Reminders
 - 1. Impossible to take the log of a <u>negative number</u> or <u>zero</u>.
 - 2. When you <u>raise</u> both sides of an equation to $\frac{?}{even \#}$ or $even \# \sqrt{?}$, include \pm in your answer.
 - 3. Check for extraneous solutions whenever <u>raising</u> both sides of an equation to an <u>even</u> power.
 - 4. If the base is not indicated, it's <u>ten</u>.
 - 5. Complete the table below.

Product Property	Quotient Property	Power Property
$\log_b mn = \log_b m + \log_b n$	$\log_b \frac{m}{n} = \log_b m - \log_b n$	$\log_b m^n = n \log_b m$

Unless otherwise stated, round to the nearest tenth.

B. Equations containing variables as the <u>base</u>.

→ Reverse PEMDAS

1. $y^{\frac{3}{4}} - 5 = 1 \approx 10.9$

2. $\sqrt[3]{x^2} - 2 = 2 \pm 8$

- C. Equations containing variables as the <u>exponent</u>.
 - \rightarrow Simplify (Get base with exponent alone.)
 - → Log **Both** Sides
 - → Power Property
 - \rightarrow Solve
 - 1. $2 + 3^x = 82 \approx 4.0$

2. $12^{x-1} - 2 = 18 \approx 2.2056$ (round to 4 decimal places)

- D. Equations containing <u>logs</u> of variables.
 - → Shrink Using Properties
 - \rightarrow Rewrite in Exponential Form
 - \rightarrow Solve
 - 1. $\log 6 \log(3x) = -2$ 200

2. $\log(x + 21) + \log x = 2$ 4 (not -25)