\qquad
\qquad Date \qquad

7-3
 Practice
 Logarithmic Functions as Inverses

Form K

Write each equation in logarithmic form.

1. $32=2^{5}$
2. $243=3^{5}$
3. $625=5^{4}$

Write each equation in exponential form.
4. $\log _{3} 9=2$
5. $\log _{5} 125=3$
6. $\log _{8} 512=3$

Evaluate each logarithm.
7. $\log _{9} 27$
8. $\log _{8} 256$
9. $\log _{125} \frac{1}{25}$

$$
\begin{array}{rlrl}
\log _{9} 27 & =x & \log _{8} 256 & =x \\
27 & =9^{x} & 256=8^{x} \\
3^{3} & =\left(3^{2}\right)^{x} & \\
3^{3} & =3^{2 x} & \\
3 & =2 x & \\
x & = &
\end{array}
$$

The formula $\log \frac{I_{1}}{I_{2}}=M_{1}-M_{2}$ is used to compare the intensity levels of earthquakes. The variable I is the intensity measured by a seismograph. The variable M is the measurement on the Richter scale. Use the formula to answer the following problem.
10. In 1906, an earthquake of magnitude 8.25 hit San Francisco, California. Indonesia was hit by an earthquake of magnitude 8.5 in 1938. Compare the intensity of the two earthquakes.
\qquad Class \qquad Date \qquad

$$
\text { 7-3 } \begin{array}{ll}
\text { Practice } \text { (continued) } & \text { Form K } \\
\text { Logarithmic Functions as Inverses } &
\end{array}
$$

11. Error Analysis A student drew the graph below to represent the function $y=\log _{4} x$. What mistake did the student make when she drew her graph?

Graph each loga
12. $y=\log _{2} x$

Identify each function as a compression, a stretch, or a translation of the parent function.
14. $y=4 \log _{3} x$
15. $y=\log _{2} x+10$
16. $y=0.25 \log _{4} x$

Transform the function $y=\log _{5} x$ as indicated below.
17. stretch by a factor of 3 and translate 6 units up
18. compress by a factor of 0.4 and reflect in the x-axis

