Name	C	lass	Date
7_3	Practice		Form K
7-5	Logarithmic Functions as Inve	rses	
Write each eq	uation in logarithmic form.		
1. $32 = 2^5$	2. 243 = 3 ⁵	3. 62	$25 = 5^4$
Write each eq	uation in exponential form.		
4. $\log_3 9 = 2$	5. log ₅ 125 = 3	6. log	$g_8 512 = 3$
Evaluate each	logarithm.		
7. log ₉ 27	8. log ₈ 256	9. lo	$g_{125} \frac{1}{25}$
$\log_9 27 = x$ $27 = 9$	$\log_8 256 = x$ $256 = 8^x$		

The formula $\log \frac{I_1}{I_2} = M_1 - M_2$ is used to compare the intensity levels of earthquakes. The variable I is the intensity measured by a seismograph. The variable M is the measurement on the Richter scale. Use the formula to answer the following problem.

 $3^3 = (3^2)^x$ $3^3 = 3^{2x}$ 3 = 2xx =

10. In 1906, an earthquake of magnitude 8.25 hit San Francisco, California. Indonesia was hit by an earthquake of magnitude 8.5 in 1938. Compare the intensity of the two earthquakes.

Name	Class	Date
7-3	Practice (continued)	Form K
	Logarithmic Functions as Inverses	

11. Error Analysis A student drew the graph below to represent the function $y = \log_4 x$. What mistake did the student make when she drew her graph?

Identify each function as a compression, a stretch, or a translation of the parent function.

14. $y = 4 \log_3 x$ **15.** $y = \log_2 x + 10$ **16.** $y = 0.25 \log_4 x$

Transform the function $y = \log_5 x$ as indicated below.

17. stretch by a factor of 3 and translate 6 units up

18. compress by a factor of 0.4 and reflect in the *x*-axis