Goal: Come up with a shortcut (formula) for multiplying expressions with the same base.

$$
a^{m} \cdot a^{n}=
$$

*If you get it, don't yell it out because we want everyone to have a chance to figure it out.

Complete the following table to assist with your conclusion.

Directions: Complete the table.

Problem	Expand	Simplified Exponential Form
1. $2^{3} \cdot 2^{2}$	$(2 \cdot 2 \cdot 2) \cdot(2 \cdot 2)=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$	2^{5}
2. $x^{4} \cdot x^{2}$		
3. $r^{3} \cdot r^{5}$		
4. $c^{1} \cdot c^{6}$		
5. $a^{m} \cdot a^{n}$	Write the formula or rule. \rightarrow	

*This shortcut ONLY applies to exponents, when you have the same base, not coefficients. Put a circle around the coefficient and a square around the exponent for the following expression.

$$
-3 x^{5}
$$

What do you think a shortcut would be when multiplying 2 values in scientific notation?

Scientific Notation Example: Be sure to leave answers in scientific notation.

$$
\begin{aligned}
\left(1.8 \times 10^{11}\right)\left(2.7 \times 10^{8}\right) & =(1.8 \cdot 2.7)\left(10^{11} \bullet 10^{8}\right)
\end{aligned} \begin{array}{ll}
\text { Associative and Commutative Prop. of Mult. } \\
& =(4.86)\left(10^{11+8}\right)
\end{array} \quad \begin{aligned}
& \text { Multiply the numbers in the first set of } \\
& \text { parentheses. Add the exponents for the powers } \\
& \text { of } 10 .
\end{aligned}
$$

1. $\left(7 a^{-1}\right)\left(-3 a^{5}\right)$
2. $-3 j^{6} \cdot 12 j$
3. $(m)\left(m^{4}\right)\left(m^{2}\right)$
4. $\left(8 h^{3}\right)\left(-5 h^{-4}\right)$
5. $x^{3} y^{-1} \cdot x y \cdot x^{-2} y^{2}$
6. $\left(-3 f^{2} g^{-3}\right)(2 f g)\left(7 f^{3} g^{-2}\right)$

Simplify each expression. Write each answer in scientific notation.
7. $\left(2 \times 10^{6}\right)\left(4 \times 10^{9}\right)$
8. $\left(-3 \times 10^{8}\right)\left(3 \times 10^{-5}\right)$
9. $\left(-7 \times 10^{11}\right)\left(-8 \times 10^{-4}\right)$
10. $\left(6 \times 10^{-7}\right)\left(-6 \times 10^{-4}\right)$

