Review 7-1 to 7-4

What is the simplified form of each expression?

1. $(-4.2)^{0}$
2. $-(4)^{-2}$
3. $(-3)^{-2}$
4. $8 g^{-2} d^{6}$
5. $\frac{3}{a^{-9} b}$
6. What is the value of $\frac{y^{-5}}{x^{-3}}$ for $x=2$ and $y=-4$?
7. What is the value of $\frac{x^{-3}}{y^{-1}}$ for $x=2$ and $y=-4$?

What is each expression written using each base only once?
8. $(7.57)^{-4} \cdot(7.57)^{4}$
9. $(-5)^{-5} \cdot(-5)^{6}$
10. $7^{10} \cdot 7^{-4} \cdot 7^{7}$

What is the simplified form of each expression?
11. $2 b^{-1} \cdot 5 b^{10}$
12. $7 x^{-8} \cdot 6 x^{3}$
13. $x^{8} \cdot 2 y^{10} \cdot 5 x^{5}$
14. $-4 x^{3} \cdot 2 y^{-2} \cdot 5 y^{5} \cdot x^{-8}$

Find the simplified form of the expression. Give your answer in scientific notation.
15. $\left(7 \times 10^{2}\right)\left(7 \times 10^{5}\right)$
16. $\left(3 \times 10^{-6}\right)\left(6 \times 10^{-8}\right)$
17. $\left(9 \times 10^{5}\right)\left(6 \times 10^{-7}\right)$
18. Astronomers measure large distances in light-years. One light-year is the distance that light can travel in one year, or approximately 5.88×10^{12} miles. Suppose a star is 1.92×10^{3} light-years from Earth. In scientific notation, approximately how many miles is it?

What is the simplified form of the expression?
19. $\left(p^{6}\right)^{2}$
20. $\left(t^{\frac{5}{3}}\right)^{\frac{1}{5}}$
21. $m^{7}\left(m^{2}\right)^{-9}$

What is the simplified form of each expression?

22. $\frac{t^{11}}{t^{2}}$
23. $\frac{y^{-2}}{y^{5}}$
24. $\frac{c^{9} d^{-7}}{c^{14} d^{-10}}$
25. Radio signals travel at a rate of 3×10^{8} meters per second. How many seconds will it take for a radio signal to travel from a satellite to the surface of the Earth if the satellite is orbiting at a height of 3.6×10^{7} meters? Give your answer in scientific notation.
26. Scientists believe that there is an extremely massive black hole at the center of the Milky Way. How many times more massive than the Sun would a black hole with a mass of $7.36 \times 10^{36} \mathrm{~kg}$ be? The mass of the Sun is approximately $1.99 \times 10^{30} \mathrm{~kg}$. Give your answer in scientific notation.
