6-8

Notes

Graphing Radical Functions

The graph of $y = a\sqrt{x - h} + k$ is a translation h units horizontally (*opposite*) and k units vertically of $y = a\sqrt{x}$. The value of a determines a vertical stretch or compression of $y = \sqrt{x}$, and whether the graph is the top or bottom of a sideways U-shape.

Problem

What is the graph of $y = 2\sqrt{x-5} + 3$?

$$y = 2\sqrt{x-5} + 3$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$a = 2 \quad h = 5 \qquad k = 3$$

Exercises

Graph each function.

1.
$$y = \sqrt{x-4} + 1$$

2.
$$v = \sqrt{x} - 4$$

3.
$$y = \sqrt{x+1}$$

4.
$$y = -\sqrt{x+2} - 3$$

5.
$$y = 2\sqrt{x-1}$$

6.
$$y = -2\sqrt{x+3} + 4$$

7.
$$y = -\sqrt{x-1}$$

8.
$$y = \sqrt{x+3} - 4$$

9.
$$y = 3\sqrt{x} + 2$$

