\qquad
\qquad Date \qquad

$$
6-7
$$

Practice
Form K
Inverse Relations and Functions

Display the inverse table of each relation. (Switch the corresponding x and y values.)
1.

3.

x	y
-3	2
-2	2
-1	2
0	2

Find the inverse of each function. To start, switch x and y.
4. $y=\frac{x}{2}$
5. $y=x^{2}+4$
6. $y=(3 x-4)^{2}$

$$
x=\frac{y}{2}
$$

Graph each relation and its inverse. (Graph the given function. Identify ordered pairs (x, y). Switch them and replot.)

\qquad
\qquad Date \qquad
6-7
Practice
(continued)
Form K

Inverse Relations and Functions

Find the inverse of each function. To start, switch \boldsymbol{x} and \boldsymbol{y}.
10. $f(x)=(x+1)^{2}$
11. $f(x)=\frac{2 x^{3}}{5}$
12. $f(x)=\sqrt{3 x}+4$
13. Multiple Choice What is the inverse of $y=5 x-1$?
A $f^{-1}(x)=5 x+1$
B $f^{-1}(x)=\frac{x+1}{5}$
(C) $f^{-1}(x)=\frac{x}{5}+1$
D $f^{-1}(x)=\frac{x}{5}-1$

For each function, find its inverse.
14. $f(x)=\sqrt{x+1}$
15. $f(x)=10-3 x$
16. $f(x)=4 x^{2}+25$
17. The formula for the area of a circle is $A=\pi r^{2}$.
a. Find the inverse of the formula. Is the inverse a function?
b. Use the inverse to find the radius of a circle that has an area of $82 \mathrm{in}^{2}{ }^{2}$.

For Exercises $18-20, f(x)=5 x+11$. Find each value. To start, rewrite $f(x)$ as y and switch x and y.
18. $\left(f \circ f^{-1}\right)(5)$
19. $\left(f^{-1} \circ f\right)(-3)$
20. $\left(f^{-1} \circ f\right)(0)$
$y=5 x+11$

