Form K Practice 6-7 Inverse Relations and Functions

Display the inverse table of each relation. (Switch the corresponding *x* and y values.)

Find the inverse of each function. To start, switch *x* and *y*.

Graph each relation and its inverse. (Graph the given function. Identify ordered pairs (*x*, *y*). Switch them and replot.)

Name		Class	Date	
6-7	Practice (continued)			Form K
	Inverse Relations and Fund	ctions		

Find the inverse of each function. To start, switch *x* and *y*.

10.
$$f(x) = (x + 1)^2$$
 11. $f(x) = \frac{2x^3}{5}$ **12.** $f(x) = \sqrt{3x} + 4$

13. Multiple Choice What is the inverse of y = 5x - 1?

A
$$f^{-1}(x) = 5x + 1$$
 B $f^{-1}(x) = \frac{x+1}{5}$ **C** $f^{-1}(x) = \frac{x}{5} + 1$ **D** $f^{-1}(x) = \frac{x}{5} - 1$

For each function, find its inverse.

14.
$$f(x) = \sqrt{x+1}$$
 15. $f(x) = 10-3x$ **16.** $f(x) = 4x^2 + 25$

17. The formula for the area of a circle is $A = \pi r^2$.

a. Find the inverse of the formula. Is the inverse a function?

b. Use the inverse to find the radius of a circle that has an area of 82 in.^2 .

For Exercises 18 - 20, f(x) = 5x + 11. Find each value. To start, rewrite f(x) as y and switch *x* and *y*.

18.
$$(f \circ f^{-1})(5)$$

 $y = 5x + 11$
19. $(f^{-1} \circ f)(-3)$
20. $(f^{-1} \circ f)(0)$