\qquad Hour: \qquad
6-7

Notes

Inverse Relations and Functions

Choose the word or phrase from the list that best matches each sentence.
inverse relation inverse functions one-to-one function $\quad f^{-1}$

1. In a one-to-one function , each y-value in the range corresponds to exactly one x-value in the domain.
2. A relation pairs element a of its domain to element b of its range. The \qquad inverse relation pairs b with a.
3. The inverse of a function f is represented by \qquad .
4. If a relation and its inverse are functions, then they are \qquad inverse functions
5. Explain each of the steps followed to find f^{1} of $f(x)=\sqrt{3 x-2}$. The first step is done for example.

$$
\begin{aligned}
y=\sqrt{3 x-2} & \text { Replace } f(x) \text { with } y . \\
x=\sqrt{3 y-2} & \text { Switch } x \text { and } y . \\
x^{2}=3 y-2 & \text { Square both sides. } \\
x^{2}+2=3 y & \text { Add } 2 \text { to both sides. } \\
y=\frac{x^{2}+2}{3} & \text { Divide both sides by } 3 \text { and solve for } y .
\end{aligned}
$$

6. Find f^{-1} for $f(x)=4 x-8$, and explain the steps.

$$
\begin{array}{ll}
y=4 x-8 & \text { Replace } f(x) \text { with } y . \\
x=4 y-8 & \text { Switch } x \text { and } y . \\
x+8=4 y & \text { Add } 8 \text { to both sides. } \\
y=\frac{x}{4}+2 & \text { Divide both sides by } 4 \text { and solve for } y .
\end{array}
$$

In general, summarize the steps above:

$$
1 \text { - Replace } f(x) \text { with } y .
$$

2 - $\underline{\text { Switch } x \text { and } y . ~}$

\qquad

Caution:

a. You may want to change roots to exponents $(\sqrt[b]{c})^{a} \rightarrow c^{\frac{a}{b}}$.
b. Pay attention to what is inside parenthesis and radicals.
c. When raising both sides of an equation to $\frac{\#}{\text { even\# }}$, include \pm in your result.
**Seriously, please pay attention to this stuff. **

Examples - Find the inverse equation.
1.

$$
\begin{aligned}
& f(x)=\sqrt[3]{x+2}-4 \\
& x=\sqrt[3]{y+2}-4 \\
& x=(y+2)^{\frac{1}{3}}-4 \\
& x+4=(y+2)^{\frac{1}{3}} \\
& (x+4)^{3}=y+2 \\
& (x+4)^{3}-2=y \\
& f^{-1}(x)=(x+4)^{3}-2
\end{aligned}
$$

2.

$$
\begin{aligned}
& y=3 x^{4} \\
& x=3 y^{4} \\
& x / 3=y^{4} \\
& \pm(x / 3)^{1 / 4}=y \\
& y^{-1}= \pm \sqrt[4]{x / 3}
\end{aligned}
$$

