(\mathcal{T} wo Funfilled Functions Wrapping into One Amazing Function!)

Notation

$$
\begin{aligned}
& (g \circ f)=g(f(x)) \quad \begin{array}{l}
\text { start } \\
\text { here }
\end{array} \\
& \ldots \text { is read " } g \text { off of } x . "
\end{aligned}
$$

When evalulating, work from the inside out.

Don't write...just watch.
Evaluate $g(f(2))$ given $f(x)=3 x-5$ and $g(x)=x^{2}+2$.

... Now wríte:
Evaluate $g(f(2))$ given $f(x)=3 x-5$ and $g(x)=x^{2}+2$.

Examples to try:
Let $f(x)=x-2$ and $g(x)=x^{2}$.

$$
\#_{1}(f \circ g)(-1) \quad \text { \#2 } \quad g(f(-1))
$$

\#?

A car dealer offers a 15% discount off the list price x of any car on the lot. At the same time, the manufacturer offers a $\$ 1000$ rebate for each purchase of a car.
a. Write a function $f(x)$ to represent the price after discount.
b. Write a function $g(x)$ to represent the price after the $\$ 1000$ rebate.
c. Suppose the list price of a car is $\$ 18,000$. Use a composite function to find the price of the car if the discount is applied before the rebate. \square
d. Suppose the list price of a car is $\$ 18,000$. Use a composite function to find the price of the car if the discount is applied after the rebate.
e. Reasoning Between parts (c) and (d), will the dealer want to apply the discount before or after the rebate? Why?

SmileyTrampoline.gif-c200

