A. Investigation

Parallel Lines (Never Intersect)	Perpendicular Lines (Intersect at a 90° Angle)
Complete: The slopes of parallel lines are	Complete: The slopes of perpendicular lines are

B. Write the equation of the line parallel to the given line with the given y intercept.

1. $y=-\frac{2}{3} x-4 ; b=6$
2. $y=\frac{1}{4} x+9 ; b=-1$
$y=-\frac{2}{3} x+6$

$$
y=\frac{1}{4} x-1
$$

2. $y=4 ; b=5$
3. $y=3 x-10 ; b=-7$
$y=5$

$$
y=3 x-7
$$

C. Write the equation of the line perpendicular to the given line with the given y-intercept.

1. $y=-\frac{2}{3} x-4 ; b=6$
$y=\frac{3}{2} x+6$
2. $y=\frac{1}{4} x+9 ; b=-1$

$$
y=-4 x-1
$$

2. $x=4 ; b=5$
$y=5$
3. $y=3 x-10 ; b=-7$
$y=-\frac{1}{3} x-7$
D. Challenge
4. Write the equation of the line perpendicular to the line

$$
y=-\frac{1}{2} x+6
$$

and passes through point (4, -6).

$$
y=2 x-14
$$

2. Using the map and coordinate plane below, find the slopes of Sycamore Street and Eureka Road to decide if they are parallel.

Sycamore ($-35,5$) and (10, 6); Slope $=\frac{6-5}{10+35}=\frac{1}{45}$
Eureka $(-25,-5)$ and ($30,-4$); Slope $=\frac{-4+5}{30+25}=\frac{1}{55}$
\therefore not //.

