4-6 Completing the Square

have a hanalout for you.

"Completing the square" does not directly refer to a quadrilateral with 4 equal sides and 4 right angles.

Instead it implies we create a "perfect square" to alfow us to take square roots.

Why do we need to know this?

\sim To solve quadratics that are not factorable and/or have complex sofutions.
\sim To Cater understand where the quadratic formula comes from.
$\sim \mathcal{T o}$ be able to write proofs requiring the completion of the square.
Solve.

Problem	$2 x^{2}+11 x-23=-x+$
Simplify and get onfy terms with " x " on the left.	$2 x^{2}+12 x=26$
Make sure " x^{2} " coefficient is 1. If not, divide.	$x^{2}+6 x=13$
Divide the linear coefficient 6y 2. (Remember this magic number for factoring step.) Square it, and add it to Goth sides. Magic $\mathcal{N u m b e r}=$-----3	$x^{2}+6 x+9=13+9$
factor the left (using the magic number) and simplify the right.	$(x+3)^{2}=22$
Solve for " x " and be sure the answer is simplified.	$x+3= \pm \sqrt{22}$

Solve.

Problem	$3 x^{2}-42 x+78=0$
Simplify and get onfy terms with " x "" on the left.	$3 x^{2}-42 x=-78$
Make sure " x^{2} " coefficient is i. If not, divide.	$x^{2}-14 x=-26$
Divide the Cinear coefficient Gy 2. (Remember this magic number for factoring step.) Square it, and add it to Goth sides. Magic $\mathcal{N u m b e r ~}=-\ldots---7$	$x^{2}-14 x+49=-26+49$
Factor the Ceft (using the magic number) and simplify the right.	$(x-7)^{2}=23$
Sofve for " x " and Ge sure the answer is simplified.	$x-7= \pm \sqrt{23}$

$$
x^{2}-6 x=7
$$

