Landscape Design A town is planning a child-care facility. It wants to fence in a playground area using one of the walls of the building. What is the largest playground area that can be fenced in using 100 ft of donated fencing?

Equations that Apply:

Since we are maximizing area, rewrite the area formula so that it only uses 2 variables and put it in vertex form.

Standard Form $\left(y=a x^{2}+b x+c\right)$:

Identify the variables: Independent (x) Dependent (y)

Vertex Form $\left(y=a(x-h)^{2}+k\right.$ where $\left.h=\frac{-b}{2 a}\right)$:

Remember (h, k) is the ordered pair (x, y) maximum/minimum value. Therefore, the largest playground area is k, \qquad .

$$
(h, k)=(\quad, \quad)
$$

