4-1 Quadratic Functions and Transformations ~ Writing Equations in Vertex Form Notes

A. Formula

Vertex Form: $y=a(x-h)^{2}+k$ where (h, k) is the vertex (maximum or minimum) of the parabola.
$|a|>1$ Stretch (Narrow) $\quad|a|<1$ Compress (Wide)
h is the horizontal shift
k is the vertical shift
B. Real World

The bridge pictured below has the longest span of any suspension bridge in the United States. Each tower of the Verrazano-Narrow Bridge in New York rises about 650 ft . above the center of the roadbed. The length of the main span is 4260 ft . Find the equation of the parabola that could model its main cables. (Hint: Draw an x - and y axis on the picture. Have the x-axis be the roadbed and the y-axis be a vertical line of symmetry between the two towers.)

C. When the Vertex is not at the Origin - Write the equation of each parabola in vertex form.

1. vertex $(3,-2)$, point $(2,3)$
2. vertex $\left(\frac{1}{2}, 1\right)$, point $(2,-8)$
3. vertex $(-4,-24)$, point $(-5,-25)$
4. The diagram shows the path of a model rocket launched from the ground. It reaches a maximum altitude of 384 ft when it is above a location 16 ft from the launch site. What quadratic function models the height of the rocket?

