\qquad Hour \qquad
\qquad
4-1

Notes

Quadratic Functions and Transformations

Using prior knowledge from studying absolute value functions ($\boldsymbol{y}=\boldsymbol{a}|\boldsymbol{x}-\boldsymbol{h}|+\boldsymbol{k}$) and process of elimination, choose the concept from the list below that best represents the item in each box. EACH CONCEPT IS USED EXACTLY ONCE. (YOU MAY WANT TO USE PENCIL.)

axis of symmetry	parabola	translation
domain	range	equation for line of symmetry
maximum value	parent quadratic function	vertex form
minimum value	quadratic function	vertex of the parabola

1. $y=a x^{2}+b x+c$	2. a line that divides a parabola into two mirror images	3.
4. $\begin{aligned} & \text {. }(h, k) \text {, where } \\ & y=a(x-h)^{2}+k \end{aligned}$	5. the y-value of the vertex when the parabola opens up	6. $y=x^{2}$
7. the y-value of the vertex when the parabola opens down	8. $y=a(x-h)^{2}+k$	9. a shift of the graph horizontally or vertically
10. $x=h$	11. A set of input values (\boldsymbol{x}) of a relation	12. A set of output values (\boldsymbol{y}) of a relation

Complete.

1. How do you know an equation is quadratic?
2. Circle all that applies.

A quadratic function is a " U " shaped graph that opens \qquad .
up down right left
3. What is one type of real world range that should be maximized? area
4. What is one type of real world range that should be minimized? expense
5. Graph by plotting the vertex, $(\boldsymbol{h}, \boldsymbol{k})$ of $\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$, finding another point, and using symmetry to complete the graph. Also complete each category.
a. $f(x)=2(x-4)^{2}+3$
vertex: (,) another point: (,)
axis of symmetry:
domain:
range:
max/min

b. $y=-(x+3)^{2}-2$
vertex: (,) another point: (,)
axis of symmetry:
domain:
range:
max/min

