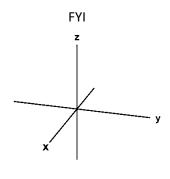
3-6 Solving Systems Using Matrices Technology Instructions

Graphing Calculator	Desmos: https://www.desmos.com/matrix
(Allowed on Most Standardized Tests – SAT)	(User Friendly)
1. "2ND" \rightarrow " x^{-1} " \rightarrow EDIT \rightarrow "ENTER".	1. "New Matrix"
2. Adjust the number of rows and columns needed.	2. Adjust the number of rows and columns needed.
3. Enter the digits using the arrows to navigate.	3. Enter the digits using the tab button or arrows to
4. "2ND" \rightarrow "MODE".	navigate.
5. "2ND" \rightarrow " x^{-1} " \rightarrow MATH \rightarrow rref(.	4. "Enter" or "ᄀ."
6. "2ND" \rightarrow " x^{-1} " \rightarrow "ENTER" \rightarrow "ENTER".	5. "rref(A)"
7. For fraction form, "MATH" \rightarrow "ENTER" \rightarrow	6. Solve the system. See the example below.
"ENTER".	
8. Solve the system. See the example below.	

Example:

Make sure the system is in standard form and variables, equal signs, and constants are lined up.


$$1x + 3y + 5x = 7$$
$$2x + 4y + 6z = 8$$
$$3x + 9y + 7z = 12$$

In matrix form, be sure to include zeros for missing variables and ones for missing coefficients.

$$A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 3 & 9 & 7 & 12 \end{bmatrix}$$

$$rref(A) = \begin{bmatrix} 1 & 0 & 0 & -\frac{7}{8} \\ 0 & 1 & 0 & \frac{3}{4} \\ 0 & 0 & 1 & \frac{9}{8} \end{bmatrix}$$

This means that $x = -\frac{7}{8}$, $y = \frac{3}{4}$, and $z = \frac{9}{8}$ or $(-\frac{7}{8}, \frac{3}{4}, \frac{9}{8})$.

