\qquad Hour \qquad Date \qquad

3-6 Solving Systems Using Matrices

$>$ A matrix is a combination of rows and columns used to arrange data. These arrangements can be mathematically manipulated to solve problems.
$>$ The size or dimensions of a matrix are always reported as number of rows by number of columns (rows X columns). Rows are horizontal (\leftrightarrow), while columns are vertical (\downarrow). Below, matrix A is 2 X 3 and matrix B is 3×4.
$>$ When finding an element in a matrix, use the name of the matrix followed by subscripts listing the row and column of the entry. Number 1 below, A_{13}, wants to know which entry is in the $1^{\text {st }}$ row and $3^{\text {rd }}$ column of matrix A. The answer is 8 .

$$
\begin{array}{ll}
0 x+6 y+3 z=2 & 6 y+3 z=2 \\
4 x+5 y+1 z=13 \\
2 x+2 y+0 z=-10 & \text { which is the same as } \\
4 x+5 y+z=1 \\
2 x+2 y=-10
\end{array}
$$

$>$ Below, Matrix B represents the system: $4 x+\mathbf{5 y}+\mathbf{1 z = 1 3}$ which is the same as $\mathbf{4 x + 5 y + z = 1 3}$.

Identify the indicated element.

$A=\left[\begin{array}{ll|r}3 & 5 & 8 \\ 4 & 1 & 6\end{array}\right] \quad B=\left[\begin{array}{rrr|r}0 & 6 & 3 & 2 \\ 4 & 5 & 1 & 13 \\ 2 & 2 & 0 & -10\end{array}\right]$

1. A_{13}
2. B_{24}
3. B_{12}
4. A_{22}
5. B_{31}
6. A_{21}
7. B_{23}
8. A_{11}

Write a matrix to represent each system.

9. $\left\{\begin{aligned} 3 x+y & =-4 \\ -2 x+4 y & =7\end{aligned}\right.$
10. $\left\{\begin{array}{c}6 x=11 \\ -3 x+4 y=2\end{array}\right.$
11. $\left\{\begin{aligned} 4 x-y+2 z & =10 \\ 5 x+2 y-3 z & =0 \\ x-3 y+z & =6\end{aligned}\right.$

Write the system of equations represented by each matrix.
12. $\left[\begin{array}{rrr|r}2 & 5 & 0 & 13 \\ -3 & 1 & 2 & 6 \\ 4 & 0 & -3 & 5\end{array}\right]$
13. $\left[\begin{array}{rr|r}2 & 1 & -7 \\ 0 & 4 & 9\end{array}\right]$
14. $\left[\begin{array}{rrr|r}6 & 4 & -2 & 17 \\ 1 & -5 & 2 & -10 \\ 0 & 3 & -1 & 0\end{array}\right]$

Graphing Calculator Solve each system.

15. $\left\{\begin{aligned} 4 x-y & =10 \\ -2 x+5 y & =4\end{aligned}\right.$
16. $\left\{\begin{aligned} x-2 y+3 z & =18 \\ 9 x+2 y-z & =-2 \\ -6 x-y+2 z & =4\end{aligned}\right.$
17. $\left\{\begin{aligned} 3 x-4 y+z & =15 \\ -2 x-6 y+3 z & =4 \\ 2 x+2 y-2 z & =-1\end{aligned}\right.$
18. $\left\{\begin{array}{l}4 x+y-2 z=3 \\ 2 y+z=4 \\ 3 x-3 y-z=9\end{array}\right.$
19. $\left\{\begin{array}{l}5 x-2 y+z=-1 \\ -x-y-2 z=5 \\ 3 x+2 y+2 z=2\end{array}\right.$
20. $\left\{\begin{array}{l}3 x+5 z=-4 \\ -2 x+y-3 z=9 \\ -x-2 y+9 z=0\end{array}\right.$
21. Suppose the movie theater you work at sells popcorn in three different sizes. A small costs $\$ 2$, a medium costs $\$ 5$, and a large costs $\$ 10$. On your shift, you sold 250 total containers of popcorn and brought in $\$ 1726$. You sold twice as many large containers as small ones.
System: $\{$
a. How many of each popcorn size did you sell?
b. How much money did you bring in from selling small size containers?
22. Open Ended Write a matrix for a system of equations that does not have a unique solution. (Hint: Recall what a system graph of two lines looked like that had infinitely many solutions or no solutions.)

23. The following matrix shows the prices passengers on an airline flight paid for a recent ticket and how many passengers were on that flight. Some passengers paid full price for their tickets, and some bought their tickets during a half-price sale. How many passengers bought each price of ticket?
$\left[\begin{array}{rr|r}1 & 1 & 100 \\ 120 & 240 & 20,160\end{array}\right]$
24. Error Analysis Your friend says that the matrix below represents the system of equations. What error did your friend make? What is the correct system of equations?

$$
\left[\begin{array}{rrr|r}
4 & 0 & -1 & 4 \\
-3 & 2 & -2 & -2 \\
1 & -3 & -2 & -6
\end{array}\right] \quad\left\{\begin{array}{l}
4 x+y-z=4 \\
-3 x+2 y-2 z=-2 \\
x-3 y-2 z=-6
\end{array}\right.
$$

