10-1 Conic Sections

A. A conic section (or just conic) is a curve obtained as the intersection of a cone.
B. Types of Conic Sections

C. Equations of Conic Sections (Centered at the Origin)

Equation	Conic Section
$x^{2}+y^{2}=r^{2}$	Circle
$a x^{2}+b y^{2}=c^{2}$	Ellipse
$a x^{2}-b y^{2}=c^{2}$	Hyperbola
$y=a x^{2}$ or $x=a y^{2}$	Parabola

D. Domain (x) and Range (y)

Domain:
Range:
What are the x - and y-intercepts?
$2 y^{2}-x^{2}=50$
A. Circle Basics

Equation of a Circle in

 Standard Form: $(x-h)^{\mathbf{2}}+(y-k)^{\mathbf{2}}=r^{\mathbf{2}}$Center: (h, k)
Radius = r

This formula is derivied from the distance formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ where the distance becomes the radius (distance from the circle to its center).
B. Identifying the Center and Radius from an Equation

$$
(x-2)^{2}+(y+5)^{2}=9
$$

Center: (,); $r=$

C. Using Information to Write the Standard Form Equation of a Circle (Recall:
$C=2 \pi r$ and $A=\pi r^{2}$.)
Center: $(-3,4)$; Area $=100 \pi$
D. Graphing Circles
$(x+5)^{2}+(y-1)^{2}=9$ (Plot the center point, then go out r units in each direction.)

